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Executive Summary

 Scientific studies that show an association between a factor and a health

effect do not necessarily imply that the factor causes the health effect.

Many such studies are preliminary reports that cannot justify any valid

claim of causation without considerable additional research,

experimentation, and replication.

 Randomized trials are studies in which human volunteers are randomly

assigned to receive either the agent being studied or an inactive placebo,

usually under double-blind conditions (where neither the participants nor

the investigators know which substance each individual is receiving), and

their health is then monitored for a period of time. This type of study can

provide strong evidence for a causal effect, especially if its findings are

replicated by other studies. Such trials, however, are often impossible for

ethical, practical, or financial reasons. When they can be conducted, the

use of low doses and brief durations of exposure may limit the applicability

of their findings.

 The findings of animal experiments may not be directly applicable to the

human situation because of genetic, anatomic, and physiologic differences

between species and/or because of the use of unrealistically high doses.

 In vitro experiments are useful for defining and isolating biologic

mechanisms but are not directly applicable to humans.
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 Observational epidemiologic studies are studies in human populations in

which researchers collect data on people’s exposures to various agents

and relate these data to the occurrence of diseases or other health effects

among the study participants. The findings from studies of this type are

directly applicable to humans, but the associations detected in such

studies are not necessarily causal.

 Useful, time-tested criteria for determining whether an association is

causal include:

 

o Temporality. For an association to be causal, the cause must

precede the effect.

o Strength. Scientists can be more confident in the causality of strong

associations than weak ones.

o Dose-response. Responses that increase in frequency as exposure

increases are more convincingly supportive of causality than those

that do not show this pattern.

o Consistency.  Relationships that are repeatedly observed by

different investigators, in different places, circumstances, and

times, are more likely to be causal.

o Biological plausbility. Associations that are consistent with the

scientific understanding of the biology of the disease or health

effect under investigation are more likely to be causal.
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 New research results need to be interpreted in the context of related

previous research. The quality of new studies should also be assessed.

Those that include appropriate statistical analysis and that have been

published in peer-reviewed journals carry greater weight than those that

lack statistical analysis and/or have been announced in other ways.

 Claims of causation should never be made lightly. Premature or poorly

justified claims of causation can mislead people into thinking that

something they are exposed to is endangering their health, when this may

not be true, or that a useless or even dangerous product may produce

desirable health effects.
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DISTINGUISHING ASSOCIATION FROM CAUSATION:

A BACKGROUNDER FOR JOURNALISTS

Introduction

Hardly a day goes by without a new headline about the supposed health risks or benefits

of some food component, pharmaceutical product, environmental contaminant, dietary

supplement, or other substance. But are these headlines justified? Often, the answer is no.

Although the news reports are based on the results of scientific studies, in many instances

the evidence is insufficient to justify the conclusion that the substance actually caused the

health effect rather than merely being associated with it.

Journalists who report on health issues often face the problem of distinguishing

association from causation. A study that shows an association between factor X and

health effect Y in cultured cells, in experimental animals, or even in a human population

group does not necessarily imply that X causes Y. Many such studies are preliminary

reports that cannot justify any valid claim of causation without considerable additional

research, experimentation, and replication. Reports on such studies can mislead readers or

viewers into thinking that something they consume or something they are exposed to in

their surroundings is endangering their health — or that some useless or even dangerous

product may produce desirable health effects.
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The purpose of this report is to provide insight into how to use the methods of

science itself to help distinguish association from causation. The report will address such

questions as

 What kinds of studies provide evidence for causation?

 What criteria can be used to assess whether an association is causal?

 What kinds of factors other than a causal relationship might be responsible for an

association between an exposure and a health effect?

To address these complex issues, it is necessary to understand the different types of

studies that may link a factor with a health effect and the methods, such as statistical

analysis and peer review, that scientists use to judge the validity of a new research

finding.

Randomized Trials

Randomized trials are designed to isolate the effect of a single factor —X — and to

eliminate or control extraneous factors that might affect the results. In a trial of this type,

volunteers are randomly assigned to receive either X or an identical-appearing inactive

placebo, and neither the study participants nor the investigators who examine the subjects

for health effects know which substance each participant is receiving. At the end of the

study, the data are analyzed to determine whether the frequency of effect Y in those

receiving substance X differed from that in those receiving the placebo.

A randomized trial can provide strong evidence for a causal effect, especially if its

findings are replicated by other studies. But unfortunately, in the real world, except for

relatively short-term trials conducted as part of the evaluation of the safety and efficacy
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of new drugs, this type of study is usually not possible for ethical, practical, or financial

reasons. Among these practical limitations, potentially harmful substances cannot be

tested in randomized trials, unless the harm is minimal and the duration of exposure is

brief, because deliberately exposing people to serious harm is unethical. For the same

reason, substances for which there is compelling evidence of benefit cannot be tested in

randomized trials because subjects assigned to the placebo group are denied the

protective benefit.

Many exposures (e.g., exercise, dietary changes) cannot be evaluated in a double-

blind trial because they cannot be concealed from the study participants and because

100% compliance by study subjects cannot be expected. Additionally, the levels of

exposure to potentially harmful agents are necessarily minimized in trials that hold safety

among study subjects above other considerations. This practical restriction limits

randomized trials to assessment of exposures that immediately precede development of

diseases like cancer, heart disease, and stroke, which develop over long periods of time.

For example, in three randomized trials that evaluated the possible preventive effect of

beta-carotene against lung cancer, participants received beta-carotene supplements for an

average of 4, 6, and 12 years, respectively, but lung cancer develops over a period of 20

years or more. Findings from randomized trials assessing recent and low-dose exposures

will frequently differ from those attributable to higher concentrations of the same agent

and to exposures that occurred decades earlier.

Although randomized trials can only be used in restricted settings, they provide

information that is useful when making statements about cause-and-effect. For example,

randomized trials established the benefit of aspirin in preventing heart attacks — a
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finding that has prompted widespread use of aspirin for this purpose. Randomized trials

altered thinking about the once-promising hypothesis that beta-carotene could reduce

lung cancer risk. This led to recognition by researchers and clinicians that the role of

beta-carotene in cancer prevention is more complex than previously believed, i.e.,

supplementation with beta-carotene did not support the hypothesis generated from the

observational studies.

Other Types of Studies

Since randomized trials are usually unavailable and their findings are imperfect, scientists

must explore causation on the basis of other study types, including animal experiments,

in vitro (test tube or cell culture) experiments, and observational epidemiologic studies in

human populations. It is important to note that no single study of any type can justify a

claim that factor X causes health effect Y. Instead, any new finding must be considered in

conjunction with the entire body of scientific evidence on the topic to determine whether

causality is likely.

Animal Experiments

Scientists can perform experiments on animals that would be impossible in humans. They

can deliberately expose them to dangerous substances, often using doses much higher

than those to which humans would ever be exposed. They can sacrifice the animals and

examine tissues from their bodies in minute detail. If they choose a short-lived species,

they can expose the animals to a substance for a lifetime — or even for the lifetimes of

several successive generations. From such studies, scientists can generate large amounts
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of precisely measured and potentially useful data, although the relevancy of these

findings to humans is often questionable.

People are not big rats. Species differ in a variety of genetic, anatomic, and

physiologic properties that each contribute to risk of disease. Saccharin provides a classic

research example of the difference between rats and humans. Several decades ago, the

discovery that lifetime exposure to large doses of sodium saccharin caused bladder cancer

in male rats nearly led to the removal of this sweetener from the food supply in the

United States. Subsequent research showed, however, that the harmful effect of sodium

saccharin in the rat bladder is due to a mechanism that does not occur in humans (or even

in female rats).

The usual practice of using high doses in animal experiments can also lead to

results that may not be applicable to the human situation. High doses are used to increase

the likelihood of detecting an effect, if one exists, but they also create the possibility of

producing effects that would never be encountered among humans.

In Vitro Studies

In vitro experiments are conducted in cell or tissue cultures or involve isolated chemicals.

They are useful for defining and isolating biologic mechanisms but are not directly

applicable to humans. Conditions in a living organism are drastically different from those

in these simplified experimental models. Thus, the results of in vitro studies are useful

only as a small part of a larger body of scientific evidence and should never be taken,

alone, as evidence of causality.
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Observational Epidemiologic Studies

Epidemiology is the study of the occurrence of disease in human populations. Most

epidemiologic studies are observational, meaning that study participants determined their

own exposures (for example, they chose which foods they ate and whether or not they

took dietary supplements), with this information systematically recorded by researchers.

One type of epidemiologic investigation, called an ecologic study, compares

average measures of exposure and disease for entire population groups. For example,

researchers might obtain data on exposures to various environmental contaminants in

different countries to see whether any association exists between such exposures and the

occurrence of a disease in those countries. Studies of this type are relatively easy and

inexpensive and often rely on data collected for other purposes. But they have a critical

limitation; they cannot show whether the persons exposed to the factor are the same ones

who developed the health effect under investigation. Because of this limitation, ecologic

studies derive their greatest value by generating new hypotheses for future study, rather

than testing hypotheses about causation.

For example, data from various countries have shown a strong correlation

between dietary fat intake and the risk of death from breast cancer, with higher death

rates from this disease in countries where fat intakes are higher. These data raised

questions about whether dietary fat might play a role in breast cancer causation.

However, other types of evidence, including epidemiologic studies that focused on

individuals rather than populations, have not supported this hypothesis. In those studies,

the dietary fat intakes of individual women were not associated with their later
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development of breast cancer. (This does not, of course, mean that there is no correlation

between body fat and breast cancer.)

One common type of epidemiologic study that focuses on individuals is the

retrospective case-control study, which uses interviews and medical records to compare

the past histories and lifestyles of individuals who have been diagnosed with a disease

(cases) with those of otherwise similar individuals (controls) who have not. Case-control

studies can be conducted quickly and can be used to investigate any disease — even very

rare ones. Studies of this type, however, are prone to bias caused by the different ways in

which people who are ill and those who are well recall past events. Collecting valid

information for past exposures may differ for cases and controls and may also be difficult

because people’s recall of the distant past may be poor. In addition, it is challenging to

choose control subjects who are truly comparable to the disease cases regarding a

multitude of other potentially important characteristics.

In another type of epidemiologic study, called a prospective cohort study,

information is collected about the lifestyles, exposures, and health of a group of people

(the cohort), none of whom, at the start of the study, have the disease under investigation.

Follow-up data are then collected from these people for a period of time, often many

years. Those who later develop the disease are compared to those who do not to see how

their exposures and experiences were different. This type of study design avoids some of

the problems inherent in case-control studies. People are not asked to recall events from

the distant past, and all subjects are well at the time when they are interviewed regarding

exposure. In addition, the researchers don’t have to make special efforts to ensure that ill

subjects and well subjects are otherwise similar because all participants are drawn from
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the same population. Prospective cohort studies have limitations of their own, however.

They are time-consuming and expensive, and they require a large number of study

participants. Moreover, cohort studies are cost prohibitive for investigation of rare

diseases in which follow-up of extraordinarily large cohorts would be required.

In all observational epidemiologic studies, findings of an association between a

substance or exposure and a health effect do not necessarily imply causation. For

example, a study might show that the habit of carrying matches is associated with an

increased likelihood of later developing lung cancer. But this effect is not causal; it is due

to a confounding factor — a third factor that is associated with both the health effect and

a true causative agent — in this instance, cigarette smoking.

The match-carrying example may seem farfetched, but the problem of

distinguishing causal relationships from those attributable to confounding factors is real

and serious, and it arises in many epidemiologic investigations. For example, prior to the

randomized trials of beta-carotene mentioned earlier, numerous observational

epidemiologic studies had indicated that people who consumed generous amounts of

beta-carotene in their daily diets had lower risks of lung cancer than those who consumed

little beta-carotene. Indeed, it was this evidence that prompted scientists to undertake the

lengthy and expensive randomized trials that unexpectedly showed that beta-carotene was

ineffective at preventing lung cancer.

The debate continues among scientists about reasons for the differences in the

findings in the observational studies and randomized trials of beta-carotene. The results

of these studies may differ because of differences in the timing and levels of exposure

studied.
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As already mentioned, randomized trials assess associations between differences

in exposure to specific agents, that are frequently quite modest, during a relatively short

time-period between exposure and disease assessment. In contrast, observational

epidemiologic studies frequently assess exposure differences that are more substantial,

with the timing between exposure and disease spanning decades. Just as cigarette

smoking is unassociated with risk of lung cancer until two decades after smoking is

initiated, difference in timing and exposure dose that are inherent in the two study types

are more than sufficient to account for the differences in beta-carotene findings produced

in the two study types. As of this writing, then, we still cannot say with certainty if or to

what extent beta-carotene is protective against lung cancer.

Some Useful Terminology

To fully understand epidemiologic reports, it is necessary to know the meaning of some

terms commonly used by epidemiologists, including the following.

Incidents, Incidence, Risk, Prevalence, and Mortality

The term incidents refers to new cases of a disease (e.g., people newly diagnosed with

diabetes), while incidence, is the risk of disease in a population. Epidemiologists

sometimes refer to incidents as incident cases to ensure distinction between the

phonetically similar terms, incidents and incidence. Incidence is measured as the number

of incident (new) cases, divided by the size of the susceptible population in which they

developed. Incidence is identical to risk and measures the probability of developing

disease within a susceptible population.   
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In contrast, the number of prevalent cases refers to existing disease cases (e.g.,

people with diabetes, including both those newly diagnosed and those who have had the

condition for some time). Like incidence, prevalence is measured as a rate and represents

the number of existing cases (new and old cases), divided by the size of the population in

which they are measured. The mortality rate refers to the risk of death in a population

(e.g., those who died from diabetes, divided by the size of the population in which the

deaths were counted).

Data are typically expressed in terms of a population of a particular size. For

example, U.S. government statistics for 2004 express the total mortality rate for that year

as “816.5 deaths per 100,000 population” and infant mortality as “6.8 deaths per 1,000

live births.”1 Some rates are frequently presented as percentages to display findings in a

manner that is intuitive to the audience (e.g., “In 2004, 34% of American adults were

obese.”2).

If the sizes of populations are not taken into account, data may be misinterpreted.

For example, consider deaths in 2004 in two of the New England states, Maine and

Connecticut.3 A total of 29,289 people died in Connecticut that year, while 12,405 died in

Maine. But even though the total number of deaths was higher in Connecticut, the

mortality rate for that year, which is a more meaningful piece of information, was higher

in Maine (941.7 per 100,000 population vs. 836.0 per 100,000 population in

Connecticut).

                                                       
1 Data from the U.S. Centers for Disease Control and Prevention. Available online at
http://www.cdc.gov/nchs/fastats/deaths.htm.
2 Data from the U.S. government publication Health, United States, 2006. Available online at
http://www.cdc.gov/nchs/hus.htm.
3 All Maine/Connecticut data were taken from the Centers for Disease Control and Prevention’s
National Vital Statistics Reports, Vol. 54, No. 19, June 28, 2006. Available online at
http://www.cdc.gov/nchs/data/nvsr/nvsr54/nvsr54_19.pdf.
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The ages of the members of a population also need to be taken into account when

interpreting data. Both total death rates and rates of major chronic diseases, such as heart

disease and cancer, are higher in older people than younger ones. To balance for the

effects of age, incidence and mortality rates are often age-adjusted. The adjusted rate is

composed of a weighted average for specific age groups. Age-adjustment or age-

standardization allows comparison of disease rates in different populations that are

produced by all characteristics other than age.   

A researcher who was interested in finding out whether the higher death rate in

Maine than in Connecticut results from characteristics other than age differences would

want to compare age-adjusted death rates rather than unadjusted ones. The age-adjusted

death rates in Connecticut and Maine in 2004 were 705.6 and 803.6, respectively, per

100,000 U.S. standard population. Even after age is taken into account, the death rate in

Maine is higher than that in Connecticut, signifying that the difference is attributable to

some other reason.

Relative Risk, Risk Ratio, and Odds Ratio

Relative risk (also called risk ratio and often abbreviated RR) is a measure that compares

the risk of a disease or other event in a group of people exposed to a particular substance

or condition to that in a comparison group (typically an unexposed group or one with a

low level of exposure). For example, if a study shows a relative risk of disease A of 2.0 in

a group of people exposed to a certain factor, as compared to those who were not

exposed, that means that the exposed people are twice as likely to develop the disease. A

relative risk of 1 indicates no difference in risk between the two groups, and a relative
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risk of less than 1 indicates that the exposed group has a lower risk than the comparison

group.

Odds ratio (also called relative odds and often abbreviated OR) is a similar

though not identical measure that is frequently used in case-control studies. It compares

the odds of an event occurring in one group of people to the odds of it occurring in

another group. An odds ratio of 1 means that the event is equally likely in both groups.

An odds ratio greater than 1 indicates that the event is more frequent in the first group.

An odds ratio less than 1 means that it is less frequent in the first group.

Criteria for Distinguishing Association from Causation

Since no study, regardless of type, yields perfectly valid findings, how can association be

distinguished from causation? Scientists have long wrestled with this question and have

established criteria that have proven helpful in making this distinction. One of the best

known is a set of criteria proposed by British epidemiologist Austin Bradford Hill in

1965. In the subsequent decades, five of the these criteria, as summarized in the table and

discussed below, have proven particularly useful.

Most Useful Criteria for Deciding That an Association Is Causal

Criterion Comments
Temporality Cause precedes effect
Strength Large relative risk
Dose-response Larger exposures associated with higher frequency of effect
Consistency Repeatedly observed by different investigators, in different places,

circumstances, and times
Biological
plausibility

Causal interpretation is congruent with knowledge of the natural
history/biology of the effect
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 Temporality. For a relationship to be causal, the cause must precede the effect.

Considerations of temporality are especially noteworthy for diseases that take a

long time to develop, such as cancer. Thus, a change in cancer rates in the year

2000 could not have been caused by a change in exposure to an environmental

chemical during the same year.

 Strength. Scientists can be more confident in the causality of strong associations

(those with a large relative risk) than weak ones. When an association is strong, it

is more likely to be causal (as is true for the relationship between cigarette

smoking and lung cancer, which has a relative risk of at least 10) or due to a

readily identifiable confounding factor (as is true for the relationship between the

carrying of matches and lung cancer). The causality of weaker relationships is

more difficult to establish because such relationships could easily be due to subtle

confounding factors that are hard to identify.

Epidemiologists would look at increases in relative risk of less than 2 as

being no better than moderate and would be reluctant to label them as causal

unless there is a great deal of additional evidence in support of the relationship.

Weak relationships of this type could easily be produced by confounding that

might never be detected. Small increases in relative risk, however, may be of

great public health importance, especially if they pertain to very common

diseases, such as heart disease.

Approximately 700,000 people die of heart disease in the United States

each year.4 If an epidemiologic study indicated that some factor was associated

                                                       
4 Data from the U.S. Centers for Disease Control and Prevention. Available online at
http://www.cdc.gov/heartdisease/facts.htm#facts.
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with a 50% increase in the heart disease death rate (that is, a relative risk of 1.5),

that would mean an additional 350,000 deaths per year — a very meaningful

change in terms of public health. It would be important — but also very

challenging — to determine whether this association is causal. To investigate

causality, scientists would need to replicate the original finding, study the

association in other populations and using other types of studies, and investigate

its biological plausibility and whether or not a dose-response relationship exists,

as described below. The dilemma that surrounds weak associations that are

potentially important but are marked by uncertainty about their causal nature

makes the interpretation of such research findings challenging.

 Dose-response. The term “dose-response” (Bradford Hill used the term

“biological gradient”) means that the likelihood or intensity of a biological effect

is greater in people or animals with greater exposures to an agent than in those

with lesser exposures. The presence of a dose-response relationship tends to

support causality. In the graph below, the association indicated by the pink line,

where the frequency of response increases as exposure increases, is more

convincingly supportive of a causal relationship than the one indicated by the blue

line, where response does not vary predictably with the extent of exposure. It is

important to note, though, that a dose-response relationship might also be due to a

confounding factor that varies in intensity along with the factor under

investigation (for example, people who carry matches more frequently might be

heavier smokers than those who occasionally carry matches).
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Dose-Response Curves

Extent of Exposure

 Consistency. An association is more likely to be causal if it is observed by

different researchers, in different places, circumstances, and times. It is premature

and inappropriate to regard the results of any single study as causal because there

is no basis upon which to judge consistency. Although associations produced by

confounding factors are expected to vary between studies, the force of a common

biologic effect should be consistent across studies.

 Biological plausibility. An association is more likely to be causal if it makes sense

in terms of scientific understanding of the biology of the disease or health effect

under investigation. (An association between cigarette smoking and lung cancer

makes biological sense; an association between match-carrying and lung cancer

does not.)
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Statistical Analysis and Peer Review

Two other key factors that should be taken into account when evaluating a research study

are statistical analysis and peer review. Scientists pay close attention to these

considerations when evaluating a study’s credibility.

Studies that use appropriate methods to determine whether a finding is

“statistically significant” (i.e., likely to be due to a real association between two factors

rather than to mere chance) are more reliable than those that lack or misuse statistical

analysis. It is important to remember, though, that statistical significance does not imply

that an association reflects cause and effect and is not a criterion for causation. If

researchers actually analyzed data on match-carrying and lung cancer risk, they might

find that the association between the two is statistically significant, but it is certainly not

causal.

Peer review is the process of subjecting the report of a scientific study to the

scrutiny of other experts before publication. The reviewers examine the work for possible

flaws or weaknesses, and if any are present, the report may be rejected for publication or

the authors may be required to revise their report or conduct additional research before it

can be published. Because scientific reports published in peer-reviewed journals have

withstood detailed scrutiny by experts, they have a much higher degree of credibility than

other types of reports on research — such as presentations at scientific meetings, press

releases, announcements on Web sites, or self-published reports. It is not completely

unreasonable for journalists to report on these other types of scientific announcements,

but their tentative nature must be explained.
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Reporting on Studies: Some Helpful Pointers

The following points may help journalists cover health news stories that require

distinctions to be made between association and causation.

 Focus on the study design, not just the conclusions. What kind of study was it?

Human? Animal? In vitro? Epidemiologic? Some study designs are more reliable

than others, and findings derived from better-designed studies should carry more

weight.

 Ask about possible confounding. Written reports on research studies may or may

not discuss possible confounding. Researchers should be prompted to discuss

whether there are potential confounders that may have influenced the results.

Confounding, like bias (such as the bias in case-control studies that may result

from well people and ill people remembering past events in different ways), is a

major weak spot in epidemiologic research.

 Scrutinize animal tests with care. Were there appropriate controls? Were the

results statistically significant? Did the study use well-accepted methodology? Is

this animal a good model for possible reactions in humans? Do effects occur only

at high doses unlike those to which humans are subjected? To what extent, if any,

can the results be applied to the human situation?

 Check out the bona fides of a study and its authors. Completed studies published

in peer-reviewed scientific journals should carry much more weight than other

types of reports. Studies that include appropriate statistical analysis of the data

should carry much more weight than those that do not. Studies produced by
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authors not affiliated with a university, medical center, or other established

research organization should receive particularly careful scrutiny.

 Provide context and analysis. New research results need to be interpreted in the

context of related previous research, especially with regard to the criteria of

consistency and biological plausibility, as discussed above. Checking such data

with reputable health professionals and organizations who can contribute

expertise and balance to developing stories can be very helpful in putting findings

into the appropriate context.

 Beware of overinterpretation of study results by scientists themselves. Because

researchers tend to be enthusiastic about their own work, some may overinterpret

their findings, sometimes suggesting the possibility of causation when the data

only support an association. Other scientists who work in the same general area

but who were not involved in a particular study — and are not intimately

connected to or predisposed to support the study’s authors — can often spot such

overenthusiasm and put new findings into perspective. They may also be able to

point out related work by researchers other than those who performed the new

study that is making news. An analysis of the work of multiple research groups

may provide a more balanced perspective than a story exclusively devoted to the

work of a single group of researchers.

 Fight the temptation to fill explanatory vacuums. Human beings dislike

uncertainty. We are unsettled when the reason for an occurrence cannot readily be

found. It is natural, therefore, to embrace any explanation, however unlikely, for

an unexplained phenomenon. It is important that claims of causation are not made
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lightly, so that the public isn’t encouraged to take actions that are not beneficial to

their health, instead of taking actions that are supported by sound science.

 Use your wits. The first response to an incredible finding should be to question its

credibility.

For more information on distinguishing association from causation, consult the
subsequent ACSH white paper “How to Distinguish Association from Causation: A
Guide for Journalists,” by William P. Kucewicz, John W. Morgan, and Diana M. Torres.


